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Abstract 
 
The traditional method for running an Ocean General Circulation Model (OGCM) on High 
Performance Computing (HPC) platforms is to compile the source code using the native 
libraries on the host machine. The ease at which this task is accomplished will depend on the 
user’s knowledge of the HPC platform and the availability of the required libraries. The 
resulting OGCM executable will be unique to the HPC platform it was compiled on (and quite 
possibly to the user who compiled it). In the case of the NEMO OGCM, there is, in addition to 
a large user community, a dispersed developer community, each relying on their local HPC 
platform. By introducing containerisation to the build process of applications run on HPC 
platforms, one can create a reproducible environment in which these codes can be developed 
and executed. We use the open-source Singularity software to develop methods of 
containerisation for the NEMO OGCM. Several approaches are explored and tested on the 
ARCHER2 UK National HPC facility. 
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Introduction 
 
Containerisation has become an increasingly popular method for software deployment, 
especially in cloud computing environments. Over the last few years containerisation has also 
been gaining traction in the High Performance Computing (HPC) community with its benefits 
of flexibility and reproducibility. By deploying a container image on an HPC platform the 
traditional methods of: transferring code, setting up, debugging, error resolution and library 
conflict/installation are avoided. As discussed in [1] containerised computing provides a 
convenient application for the scientist, minimising any adaptation required to the HPC 
environment. It becomes possible to move between environments and scale up or down in a 
consistent and reproducible manner e.g. from a local cluster to a national HPC facility, or even 
the cloud, with a different run-time environment. In addition, exotic applications that are not 
traditionally supported on HPC platforms can also be accommodated through the use of 
containers. In an effort to make reproducible scientific results we are increasing making use of 
code repositories and official data archives. With the use of containers, peers can reproduce the 
entire package. The container provides the means to reconstruct the exact runtime environment 
the model code was executed in. This concept of full reproducibility not only makes it easier 
to appraise or build on scientific studies, but it can also benefit the development cycle of the 
code. Another benefit of containerisation is its use as a teaching aid or for outreach, where 
knowledge of compilers and machine architectures is limited; it provides a packaged solution 
accelerating the setup process, allowing the focus to be on the science.  
 
At present there are few examples of software containers being employed in the ocean 
modelling community. A recent study by Cheng et al. [2]: System for High-resolution 



 

prediction on Earth-to-Local Domains (SHiELD), looked at the containerisation of a unified 
atmospheric model for weather-to-seasonal prediction using both Docker and Singularity. They 
discuss many of the benefits of containerisation we have just outlined. One of the other points 
they raise is that the container may also be used to release software whilst protecting innovative 
schemes, and therefore intellectual property. Encapsulating a scientific code or application 
(along with their dependencies) as a container image provides an attractive, consistent and 
lightweight method for their efficient deployment on a wide variety of computer systems. 
 
In this report we present a method for the containerisation of the Nucleus for European 
Modelling of the Ocean (NEMO) framework and explore the possible benefits that this 
approach may have for the ocean modelling community. We begin with an overview of the 
NEMO framework and the Singularity container software. Next, we outline the approach taken 
in deploying a series of test containers on the UK’s ARCHER2 national HPC facility. We then 
evaluate the performance of the containerised code versus the bare metal equivalent. Finally, 
we summarise the current landscape of container technologies and the merits of employing 
containers for the running Ocean General Circulation Model (OGCM) simulations. 

Framework 
 
NEMO 
 
The Nucleus for European Modelling of the Ocean (NEMO) is a framework for ocean and 
climate modelling [3]. The ocean component of NEMO is a primitive equation model 
employed for a range of idealised, regional and global ocean circulation studies. It provides a 
flexible tool for studying the ocean and the wider earth climate system over a wide range of 
space and time scales [4]. At present, standard global OGCM configurations using NEMO are 
of the horizontal resolution of 1/12o and 75 levels in the vertical. This roughly equates to five 
trillion active grid cell and is typically run on O(1000) cores. Regional OGCM simulations, on 
the whole, consume more modest resource. A workhorse of the National Oceanography Centre, 
UK, is the Atlantic Margin Model and has a horizontal resolution of 7km (AMM7). This has 
around 3 million active grid cells and can be comfortably accommodated on O(100) cores. 
Coupled to NEMO is XIOS, a standalone application that manages the diagnostic outputs. For 
the purpose of this study XIOS is treated as part of the NEMO framework.  
 
Singularity 
 
Like many of the other containers available, Singularity was developed to provide a 
reproducible and mobile environment in which to run applications (see Kurtzer et al [5] for full 
details). One of the main uses of Singularity is to provide a means of containerisation to the 
scientific computing and HPC communities. The open source code is designed to run as a non-
privileged user (root-less) and does not have a persistent control daemon. While previous 
geophysical studies employing containers have made use of Docker, e.g. [6], the use of 
Singularity has benefits in a HPC environment where the scientist will almost likely not have 
root permissions. In addition, the container image can be encrypted to secure applications, 
models, and data, and there is also support from public/private key signing and guarantees of 
immutability. From a practical standpoint the use Singularity allows the reproducible build, 
share, and archive of applications, models and data from workstations, to HPC, to the edge, 
securely leveraging GPUs, FPGAs, high-speed networks, and filesystems [7]. 
 



 

While Singularity can build containers in several different formats the default is Singularity 
Image Format (SIF) files and are compressed and immutable. This file contains prebuilt 
applications and dependencies, in addition to any other files and data, that are to be used by a 
Singularity container to construct a runtime environment and run the application.   

Application 
 
There is no set way to approach the containerisation and will be, ultimately, guided by the 
application and/or end goal. In addition, the SIF file can be relatively lightweight, containing 
only the executable and therefore requiring additional libraries, data and inputs to be bound to 
the container at runtime. For this study we explore the containerisation of the NEMO 
application and all its dependencies, binding the AMM7 configuration and forcing files to the 
container at runtime. We also explore the Hybrid and Bind approach to message passaging 
when deploying containers. During the build process NEMO is compiled with a choice of MPI 
libraries. When the container is deployed in Hybrid mode the MPI processes outside to the 
container are handle by the host, working in conjunction with the MPI in the container. In Bind 
mode the container relies solely on the host’s MPI libraries, which are bound to the container 
at runtime. 
 
Approach 
 
While Singularity container images are often talked about as portable, i.e. infrastructure 
agnostic, in reality the interconnect and MPI implementation is specific to each HPC system 
prevents such generality. In order for the container application to be deployed, it must either 
have the same MPI libraries as the host or at the very least compatible application binary 
interfaces (ABI). In the case of the ARCHER2 system the MPICH and openMPI libraries are 
available by default; while openMPI is commonly used it is not part the MPI ABI initiative, 
whereas MPICH is. The ARCHER2 system has been configured to maximise performance 
using the MPICH software. We chose to implement both an openMPI and MPICH version of 
the container image, in order to cover the needs of most of the NEMO community. 
 
Our approach is two step for efficiency. The first is to build a SIF file of the dependencies as 
closely aligned to the host system as possible. The second it to then use this as the bootstap 
agent in building the NEMO SIF file. The first SIF file is relatively large and time invariant, 
so it only has to be built once. The second step is lightweight and may have to be recompiled 
several times depending on the user’s needs.  
 
In this study we are only building a SIF file of the NEMO application. All the configuration 
files and input data required to run OGCM are external and not included in the SIF file. That 
is not to say they that they couldn’t be. However, we chose this approach to demonstrate that 
different configurations can by mounted at runtime allowing the user a flexible approach, 
whilst rendering the core application immutable. If we were publishing a scientific report, then 
including the configuration (and possibly the input data) in the SIF file may be a more desirable 
approach to take.   
 
Build Process 
 
The Singularity definition file provides a recipe to build the reproducible SIF file. It contains 
information about the base OS, software to compile and environment setup. The following 



 

stripped-down example illustrates the process of building a NEMO/XIOS SIF. In practice a 
two-step build was employed in the CoNES project. The first step is to containerise the OS 
and libraries required to build NEMO/XIOS. The second is to bootstrap that SIF setup in the 
build process of the NEMO/XIOS SIF file. This can then be tidied, removing any redundant 
build files and system libraries and reducing the size of the container image. Here, we present 
an overview of simplified key points: 
 
The header of the first definition file specifies the bootstrap agent used to create the base 
image. In this instance the OS built is Ubuntu 20.4.  
 
Bootstrap: library 
From: ubuntu:20.04 
 
%files 
    input_files/NEMO_in /input_files/NEMO_in 
 
The next section, %files , lists the external files on the host system requires to build the SIF 
file. This is a simple namelist file, NEMO_in , which provides variables that allow the user to 
customise the build process: 
 
MY_SRC=                        # If blank no need to do anything 
NEMO_VERSION=4.0.4             # Check that VERSION is 4.0.[2-6], 4.0_HEAD or trunk 
XIOS_REVISION=                 # Use default value if empty 
NEMO_COMPONENTS='OCE'          # Which NEMO components to build OCE/ICE/TOP etc 
CPP_KEYS=                      # Any additional compiler keys to include? 
MPI=                           # Which MPI implementation to use MPICH | OMPI 
 
In the %post  section, the base OS is defined along with mandatory binaries. Any relevant 
dependencies not available via apt-get  (MPI, HDF5 and netCDF) are built from source. The 

following is truncated for brevity: 

%post 
 
    ## 
    # Install apt-get binaries, build necessary dependencies 
    ## 
 
    apt install -y locales #locales-all 
    locale-gen en_GB en_GB.UTF-8 # en_US en_US.UTF-8 
 
    apt install -y software-properties-common 
    add-apt-repository universe 
    apt update 
 
    apt install -y python \ 
... 
    if [ "$MPI" = "MPICH" ] 
    then 
 
         apt install -y libfabric-dev 
 
         wget http://www.mpich.org/static/downloads/3.4.2/mpich-3.4.2.tar.gz 
         tar -xvzf mpich-3.4.2.tar.gz -C mpi --strip-components 1 
         rm mpich-3.4.2.tar.gz 
         cd mpi 
 
         ./configure CC=gcc CXX=g++ FC=gfortran --prefix=/opt/mpi/install 
         make 



 

         make install 
 
    elif [ "$MPI" = "OMPI" ] 
    then 
... 
 
Next the %environment  section defines the path to the HDF libraries required by the 
container at runtime. 
 
%environment 
 
    export LD_LIBRARY_PATH=/opt/hdf5/install/lib:$LD_LIBRARY_PATH 
 
 
Once the first definition file (Singularity.nemo_baseOS) has be written, building the SIF file is 
trivial: 
 
sudo singularity build nemo_baseOS.sif Singularity.nemo_baseOS 
 
To now build the NEMO SIF file a second definition file (Singularity.nemo) is written using 
the first image as the bootstrap agent: 
 
Bootstrap: localimage 
From: nemo_baseOS.sif 
 
%files 
    input_files/NEMO_in /input_files/NEMO_in 
    input_files/MY_SRC.tar.gz /input_files/MY_SRC.tar.gz 
    input_files/setup_nemo /input_files/setup_nemo 
    input_files/arch_files /input_files/arch/nemo/arch-files 
 
We now include several other input files: MY_SRC.tar.gz  contains any updated source files 
required to build NEMO; setup_nemo  is the NEMO/XIOS build script, which checks out the 
source code and builds NEMO/XIOS using the arch_files  compiler directives for the 
container environment. 
 
Finally, NEMO and XIOS are compiled using the previously imported setup script 
from %files : 
 
%post 
 
    # compile NEMO/XIOS 
    /input_files/setup_nemo -x /nemo -w /nemo -m singularity -v $NEMO_VERSION  
 
Finally, %runscript  defines the action taken when the container is executed. As both NEMO 
and XIOS have been built, there are checks to see which is required. 
 
%runscript 
 
    if [[ $1 == 'nemo' ]] 
    then 
        /opt/nemo/nemo 
    else 
        /opt/xios/xios 
    fi 
 



 

As before we can now build the NEMO SIF file: 
 
sudo singularity build nemo.sif Singularity.nemo 
 
Which can now be deployed on our host HPC system. 
 
Most HPC clusters now support the use of Singularity, while Linux and OSX also have native 
builds. Windows architectures require Singularity to run within a Virtual Machine. The 
command requires sudo  just as installing software on your local machine requires root 
privileges. If this is not an option the SIF file can either be built as fakeroot on the host system, 
or alternatively, for example, via GitHub Actions. 
 
GitHub Actions Build 
 
To improve the access to users not familiar with building containers, alternative workflows 
may be employed. We demonstrate one such workflow through the use of GitHub Actions [8]. 
If building locally is not an option, then it is possible to build and release Singularity containers 
on GitHub. Singularity Deploy developed by Vanessa Sochat [9] has been modified to allow 
users to fork the GitHub CoNES repository and, using GitHub Actions, build and release a 
bespoke NEMO singularity container in much the same manner as described previously. The 
build process takes order 15 minutes which is comparable to local builds. An individual NEMO 
SIF file build can be created using the following steps: 
 

1. Navigate to the CoNES 
GitHub repository 
(github/NOC-MSM/CoNES) 

2. Fork the repository into: 
3. Your own GitHub repository. 
4. Create and checkout a new 

branch. 
5. Edit the NEMO_in and 

VERSION files according to 
your requirements, opening a 
pull request at the same time. 

6. A GitHub Actions test is 
triggered to check the 
container can be successfully 
built. 

7. Merge back to main/master. 
8. GitHub Actions build is 

triggered. 
9. A container is published under 

the repository’s Releases. 
 
As root and fakeroot access were not permitted on the ARCHER2 HPC facility the NEMO SIF 
files were either built using the command line approach on local clusters or workstations, or 
by employing the GitHub Actions approach. 



 

Experimental Setup 
 
At the time of the study there were two supported compilers on the ARCHER2 system: Cray 
and GNU, with the choice of two transfer protocols (OFI, UCX) for the available MPI libraries: 
MPICH and openMPI. With the time and compute resource available we conducted the 
following array of experiments using the NEMO AMM7 configuration: 
 
Bare-Metal 
• Cray/MPICH/OFI 
• GNU/MPICH/UCX 
• GNU/openMPI/UCX 
 

SIF (Hybrid MPI) 
• GNU/MPICH 
• GNU/MPICH/UCX 
• GNU/MPICH/OFI 
• GNU/openMPI/UCX 

SIF (Bind MPI) 
• GNU/MPICH/ OFI 
• GNU/openMPI/UCX 
 

 
Each were performed at various levels of optimisation (O0-O3) and over a range of core counts 
(25-711). As the system openMPI netCDF/HDF libraries did not appear to work, a fresh install 
had to be built on the host for the bare-metal tests. Each experiment was run for a model month 
and timing outputs taken directly from the model’s internal diagnostics. The runscripts used in 
submission to the workload schedular can be found in the project repository [10]. 

Performance 
 
As a fixed NEMO configuration with which to run the experimental ensemble was chosen, we 
are limited to reporting the performance only in terms of the strong scaling. We were unable 
to perform simulations on a single core, so performance is measured relative to 25 cores.    We 
performed several experiments to evaluate the computational performance of the NEMO 
containers against their bare metal counterparts.  
 
Figure 1 shows the strong scaling for GNU-MPICH-OFI Hybrid container, across all levels of 
optimisation and a range of core counts. This figure is very similar in form to that of the other 
container and bare metal members. In general, at optimisation level O1 or greater, the AMM7 
simulation runs at between at around 10 hours per model year on 25 cores, dropping to around 
15 minutes per model year on 711 cores. There is a degree of super-scaling over the lower core 
counts. It is unclear as to why this happens, but the results are consistent across all ensemble 
members.  



 

 
Figure 1 Strong Scaling: GNU-MPICH-OFI-Hybrid. Red-orange axis/lines show speed relative to 25 cores (black line being 
the ideal). O0-O3 are the levels of code optimisation. Blue-green lines show the number of hours to complete 1 model year 
of simulation. 

 
To give an overview of all ensemble members at O1 optimisation we present a performance 
matrix in Figure 2a. The relative performance of each simulation is measured against the bare-
metal GNU-MPICH-UCX member. At this optimisation level the bare-metal Cray-MPICH-
OFI is the best performing member across all core counts. At higher core counts the percentage 
gain in performance generally increases. The Hybrid containers are within 5-10% of their bare-
metal counterparts, although the GNU-MPICH Hybrid container exhibits a significant 
performance drop as core placement moves to multiple nodes. While the performance of the 
GNU-MPICH-OFI Bind container is similar to that of its Hybrid equivalent, the GNU-
openMPI-UCX Bind container mimics more its bare-metal counterpart, suffering at higher core 
counts.  



 

 

 
Figure 2a Relative/Absolute performance of each experiment at optimisation level O1. Performance gain is relative to bare-
metal GNU-MPICH-UCX. Values in each box give the number of hours to complete one model year of simulation. 

 
At O3 optimisation (Figure 2b) the bare-metal Cray-MPICH-OFI performance is surprisingly 
reduced relative to the O1 optimisation at higher core counts. Overall, the bare-metal GNU-
MPICH-UCX member has the best performance. The NEMO containers are around 10% 
slower than the reference bare-metal member, but interestingly comparable to bare-metal Cray-
MPICH-OFI at higher core counts. The bare-metal GNU-openMPI-UCX and GNU-openMPI-
UCX Bind container suffer at higher core counts as in the O1 optimisation case. 
 

 
Figure 2b Relative/Absolute performance of each experiment at optimisation level O3. Performance gain is relative to bare-
metal GNU-MPICH-UCX. Values in each box give the number of hours to complete one model year of simulation. 



 

 

Discussion 
 
In this study we have detailed an approach to containerise the NEMO OGCM. It is by no means 
the only approach, but it provides the most flexibility for the user. By separating out the 
application and configuration, the user has the option to modify the parameter settings of a 
simulation while the code itself remains immutable. However, if a container were to be 
published as part of a scientific study, it may be desirable to include the configuration, and 
even forcing data and postprocessing tools, within the container image to maintain strict 
reproducibility.  
 
The performance of the containers is marginally slower than their bare-metal counterparts. 
ARCHER2 is an HPE Cray EX supercomputing system with fully optimised compilers, 
parallel libraries and interconnects; it is therefore unsurprising that bare metal cases perform 
better. Although it is interesting that, at O3 optimisation, the performance of the bare metal 
Cray-MPICH-OFI drops off at higher core counts, and is comparable to the containerised 
members. It is also unclear as to why there is a slowdown of the bare-metal GNU-openMPI-
UCX and GNU-openMPI-UCX Bind members at high core counts. This would suggest an 
issue with the host implementation of openMPI, although the GNU-openMPI-UCX Hybrid 
member appears to be unaffected by this.   
 
In terms of the different methods of message passing when using containers, the Hybrid 
approach works well as long as the MPI within the container is compiled with a compatible 
transfer protocol backend. This is demonstrated in the slow down observed with the GNU-
MPICH Hybrid member when the core count spans more than a single node. While the GNU-
MPICH-OFI Bind member has similar performance as the Hybrid members, there is a little 
more overhead in defining the runscript for this method. Paths to the MPI installation on the 
host must be identified and bound to the correct directories in the container. In contrast the 
Hybrid approach it is very similar to running native MPI applications. In both cases the MPI 
used to compile the application in the container must be compatible with the host’s MPI 
implementation. The only perceivable benefit of the Bind method is that it reduces the SIF file 
size, but only marginally.  
 
In addition to the performance tests presented, the level of output from the application was also 
assessed. It was shown to have very little impact on the performance of the containers as did 
the size of the SIF file itself. In the initial phase of the study, we employed a one-step build 
process with very little house keeping. The original SIF files were of the order 300-400MB; 
the final, slimmed down versions, being under 100MB. 
 
For most applications the ease of use, portability and reproducibility benefits of 
containerisation will outweigh the small performance hit. The performance may well be 
increased further with optimisation of the container build and runtime options, something we 
did not have time to explore. However, for large complex one-off production runs the fully 
optimised and tuned bare metal case will still be desirable. In the context of NEMO, the users 
will have to weigh up the merits of containerisation versus highly optimised native compiled 
source code on a case-by-case basis. As part of a development cycle the use of a container 
facilitates the portability of the code. During a maintenance period on the ARCHER2 system, 
we were able to transfer, setup and run the AMM7 NEMO container on the National 
Oceanography Centre’s local HPC cluster with minimal overhead. The local cluster only had 



 

IntelMPI available, but due to the MPI ABI we were able to run the GNU-MPICH-UCX 
Hybrid/Bind members without intervention.  
 
The AMM7 configuration, in hindsight, is too small to fully test scalability of the containerised 
NEMO code. Cheng et al. [2], reported performance drop off at very large core counts, 
something we were unable to confirm. In order to fully evaluate performance, with both strong 
and weak scaling, over a wide range of core counts, NEMO’s GYRE configuration should be 
employed.  

Presentations 
 
The CoNES project has been presented to the following: 

- National Oceanography Centre’s Marine Systems Modelling Group 
- Plymouth Marine Laboratory’s Biogeochemical Modelling Group 
- NEMO System Team 
- Informally at EPCC 
- RSECon22 [11] 
- UK Met Office 
- NEMO developers party 

Code Availability 
 
The code to generate NEMO Singularity containers currently resides on GitHub: 
https://github.com/NOC-MSM/CoNES. The code referenced in this report has also been 
tagged and released as 10.5281/zenodo.8305515. 
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